1 Stochastic process, brownian motion and Ito
formula. . .

A stochastic process, also known as a random process, is a mathematical
concept used to model and describe systems that evolve over time in a prob-
abilistic or random manner. It is a collection of random variables indexed by
time, representing the behavior of a system as it undergoes random changes
over a continuous or discrete time domain.

Formally, a stochastic process is defined as a family of random variables
{Xi}ter, where T is the index set representing time. For each time ¢ in the
index set, X; is a random variable that can take on different values with certain
probabilities.

The concept of a stochastic process is widely used in various fields, including
finance, economics, physics, engineering, biology, and more, to model systems
that involve uncertainty, randomness, or unpredictability.

There are two main types of stochastic processes:

1. Discrete-time stochastic process: In this type, the index set T is a discrete

set of time points, such as T = {0,1,2,...,n}, representing time steps.
The process is observed at discrete intervals.

2. Continuous-time stochastic process: In this type, the index set T is a
continuous set of time points, typically represented by real numbers, such
asT = [0,00) or T' = (—00,00). The process is observed continuously over
time.

Examples of stochastic processes include:

e Brownian motion (Wiener process) in finance and physics.

Stock prices evolving over time.

Interest rates fluctuating in financial markets.

Temperature variations over the day.

Population growth in biology.

Stochastic processes provide a powerful tool for understanding and analyzing
complex systems that exhibit randomness and variability. They are essential in
probabilistic modeling, simulation, risk management, and many other applica-
tions where uncertainty and random fluctuations play a significant role.



2 Brownian motion

The Brownian process B(t) is a continuous-time stochastic process that ex-
hibits random and unpredictable movements over time, making it a fundamental
concept in stochastic calculus and probability theory. It serves as a fundamen-
tal model for various phenomena in finance, physics, and other fields, where
randomness and uncertainty play a significant role.

The Brownian process is also the foundation for the Black-Scholes option
pricing model and has numerous applications in quantitative finance and risk
management.

The mathematical form of Brownian motion, also known as the Wiener pro-
cess, is a continuous-time stochastic process that satisfies the following proper-
ties:

1. B(0) = 0: Brownian motion starts at the origin (zero) at time t = 0.

2. Independent Increments: For any distinct time points 0 < t; < t5 <
. < tp, the increments B(t1), B(t2) — B(t1),...,B(tn) — B(tn—1) are
independent random variables.

3. Normally Distributed Increments: The increments B(t;41) — B(t;) are
normally distributed with mean zero and variance ¢;11 — ¢;. In other
words, the increment B(t;11) — B(t;) follows a normal distribution with
mean 0 and standard deviation \/%;11 — ;.

4. Stationary Increments: The distribution of B(t; 1) — B(t;) depends only
on the time difference ¢;1 — ¢; and not on the specific time points ¢; and
t;+1. In other words, the statistical properties of Brownian motion remain
the same over time.

The mathematical representation of the Brownian motion, denoted by B(t),
is given by a stochastic differential equation (SDE) of the form:

dB(t) = pdt + odW (t)

where:

e dB(t) represents the infinitesimal change in the Brownian motion B(t)
over a small time interval dt.

e 1 is the drift rate or the average growth rate of the Brownian motion over
time.

e o is the volatility or standard deviation of the random increments in the
Brownian motion.

e dW (t) is the increment of the Wiener process (Brownian motion) at time
t, which is a random variable with mean 0 and variance dt.



It’s important to note that the Wiener process W (t) is a continuous-time
stochastic process with the following properties:

o W(0)=0

e Independent increments: For any distinct time points t; < to < ... < t,,
the increments W (t1), W(te) — W(t1),..., W(t,) — W(t,—1) are indepen-
dent random variables.

e Normally distributed increments: The increments W (t;41) — W(t;) are
normally distributed with mean 0 and variance t;1 — t;.

The solution to the SDE

dB(t) = pdt + odW (t) (EQUATION 1) yields the Brownian motion B(t)
over time.

Integrating both sides, we get:

B(t) = B(0) + ut + oW ()

where B(0) is the initial value of the Brownian motion at time ¢ = 0.

This mathematical formulation of the Brownian motion using SDEs is foun-
dational in modeling various random phenomena, option pricing, risk manage-
ment, and other applications in finance, physics, and quantitative modeling.

To solve for to the Brownian motion (EQUATION 1)
B(t) = B(0) + ut + oW (t), we need to consider a function f(B(t),t) and
calculate the differential df (B(t),t) using Itd’s lemma.

3 What is the use of Ito formula?

The classic chain rule (*) of differentiation from traditional calculus is not di-
rectly applicable to solve Stochastic Differential Equations (SDEs) because of
the presence of stochastic (random) terms in the equations. In SDEs, the process
being described involves randomness and uncertainty, which requires a special-
ized approach to handle the derivatives involving these stochastic terms. The
standard chain rule, which deals with deterministic variables, cannot accommo-
date this randomness.

Ito’s Lemma is specifically designed to handle stochastic processes and their
derivatives involving random terms. It is an extension of the chain rule in
traditional calculus to work with stochastic processes and is a fundamental
result in stochastic calculus. Ito’s Lemma accounts for the randomness in the
differential equations by introducing an additional term involving the stochastic
differential of the process (dW).

In stochastic calculus, the stochastic differential (dW) represents the in-
crement of a Wiener process or Brownian motion. Since Brownian motion is
a continuous-time random process with independent and normally distributed



increments, its derivatives are non-deterministic and require a specialized ap-
proach like Ito’s Lemma.

By using Ito’s Lemma, we can handle the uncertainties in the evolution of
stochastic processes and obtain solutions to SDEs, making it a powerful tool
for modeling and analyzing systems affected by randomness and uncertainty,
particularly in finance and various scientific fields.

Let’s consider the function f(B(t),t) = B(t)?. We want to find df (B(t),t).

Using It6’s lemma, the differential df is given by:

_(of of 1, &f of
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Now, let’s calculate the partial derivatives:

1. % = 0 (since f does not have an explicit dependence on t).
2. 2L —2B(t).

3. 32,;({)2 = 2 (since the derivative of B(t) with respect to B(t) is 1, and the

derivative of 1 with respect to B(t) is 0).

Now, substitute these derivatives into the differential df:

1
df = (0 + - 2B(t) + 50—2 : 2) dt + o -2B(t) - dW (1)
Simplifying, we get:

df = (2uB(t) + 0?) dt + 20 B(t)dW (t)

So, the differential of the function f(B(t),t) = B(t)? with respect to B(t)
and ¢ is:

df (B(t),t) = (2uB(t) + ¢°) dt + 20 B(t)dW (t)

This is the result of applying Itd’s lemma to the Brownian motion B(t) and
the function f(B(t),t) = B(t)%.

Note that the first term of the right hand side of the equation is the drift
while the second term is the diffusion process.

Note also that we have here a special case where the drift depends itself on
the brownian process.

Such a scenario is commonly known as a "driven" or "self-exciting" process.

In a driven process, the drift term is a function of the current state of the
process.

Mathematically, this can be expressed as a function of the process itself or
a combination of the process and other variables. This introduces a feedback



loop where the current state of the process influences the future drift, which, in
turn, affects the future evolution of the process.

Driven processes are often used in modeling complex systems where the
dynamics depend on their own past behavior. For example, in financial models,
the volatility of an asset might depend on the past price movements, which
results in a drift term that is influenced by the historical behavior of the asset’s
price.

(*) The chain rule is a fundamental concept in traditional calculus that deals
with differentiating composite functions. It allows us to find the derivative of
a composite function by breaking it down into simpler parts and taking the
derivatives of each part. The chain rule is particularly useful when dealing with
functions that are composed of other functions, such as when one function is
applied to the output of another function.

Mathematically, if we have a composite function y = {(g(x)), where f and g
are both differentiable functions, the chain rule states that the derivative of y
with respect to x (dy/dx) is given by:

dy/dx = '(g(x)) * g’(x)

Here, £’(g(x)) denotes the derivative of the outer function f with respect to
its argument (evaluated at g(x)), and g’(x) denotes the derivative of the inner
function g with respect to x.

The chain rule can be extended to more complex compositions involving
multiple functions. For example, if we have y = f(g(h(x))), the chain rule
becomes:

dy/dx = £(g(h(x))) * g'(h(x)) * W'(x)

The chain rule is a fundamental tool in calculus and is widely used in various
applications, including physics, engineering, economics, and more. It allows us
to find derivatives of complicated functions efficiently by breaking them down
into simpler components.
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